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Some properties of microcanonical rate constants 

by CORNELIUS E. KLOTS 
Chemical and Biological Physics Section, Oak Ridge National Laboratory, 

PO Box 2008, Oak Ridge, Tennessee 37831-6125, USA 

An isolated body is characterized by conserved properties such as its energy and 
angular momentum. The rates of processes occurring in that body can thus be 
investigated as a function of these properties. On the other hand the rates may be 
better known, both conceptually and experimentally, as a function of temperature. 
This paper surveys relations between rate descriptions in the two domains, as 
deduced using steepest descent techniques. The rudiments of these techniques are 
given in an appendix. 

1. Introduction 
In 1937 Weisskopf [l] set out a discussion of the evaporation of neutrons from an 

atomic nucleus. He developed an expression for the distribution of the kinetic energies 
that they carry off. By way of delineating the subject under review here, it will be useful 
to look at a simplified version of his argument. Consider a molecule which has an 
energy E, greater than the amount E, needed for its dissociation. That extra amount 
E-E,  might be distributed among the various internal degrees of freedom of the 
products, or perhaps as E, the relative kinetic energy as they separate. A plausible 
formula for the distribution of these kinetic energies is 

where pi is the density-of-states of the internal degrees of freedom. Figure 1 sketches 
schematically this distribution. It is a roughly exponentially decreasing function, 
suggestive of a two-dimensional Maxwellian distribution. A temperature is then called 
for, and in this case there is no shortage of candidates. One can use a steepest descent 
argument [2] to show that the initial slope of the distribution is given by 

with the temperature defined by 

E - E ,  = q ( T ) - k , T  (3) 
where F ( T )  is the canonical energy that the internal degrees of freedom would have 
in a real heat bath. Alternatively, the average slope of the distribution is given by 

d lnp,(e)/d E = - (k,T)-' (4) 

E-E,  = q ( T ) .  ( 5 )  

E-E,  = E,(T)+k,T. (6) 

where the temperature is now given by 

Finally the average kinetic energy is given by E = k,T, with 

The model which this figure describes is now known technically as the low angular 
momentum phase-space limit. Although never observed in nature, it is sometimes 
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206 C. E. Klots 

E [arbitrary units] 

Figure 1. Schematic kinetic energy distribution in the low angular momentum phase-space 
limit. Formulas for (a) the initial slope, (b) the average slope, and the average energy are 
given in the text. 

closely approached, and serves as a useful starting point for more sophisticated 
models. Weisskopf, for example, went on to develop what is now known as the low 
angular momentum thermodynamic limit of the infinite-well potential. In any case we 
observe that the three temperatures defined above will agree only in the limit of a very 
large molecule. Short of that point they are only metaphors. 

By contrast the present paper is concerned with relations involving certifiable 
temperatures and small molecules. They are precise and universally applicable, unlike 
the highly idealized situation described above. Nevertheless they stem from the same 
idea of a molecule being in part a heat bath. They constitute what has been called 
‘finite heat bath theory’. 

2. Energy and temperature 
The seminal result in this subject is due to Forst [ 3 ] .  He used Laplace transform 

theory to show that, if a canonical rate constant can be expressed exactly in the 
Arrhenius form, i.e. as 

k(T)=Aexp -- , [ 6s (7) 

where A and En are strictly independent of temperature, then the corresponding 
microcanonical rate constant is given by 

where the two densities-of-states are those of the parent molecule. With a knowledge 
of the Arrhenius parameters one can thus quickly generate microcanonical rate 
constants ; conversely, from the latter the Arrhenius parameters can (see also below) 
be derived. 

Arrhenius parameters are essentially never independent of temperature, however, 
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Microcanonical rate constants 207 

and so the reliability of Forst's relation needs to be examined. This has been done 
using the more powerful technique of steepest descents. Let us define a temperature by 
the relation 

E = A E , ( T t ) + q ( T t ) - k B T i  (9) 

where %(TI) is the canonical energy of the parent and where AE,(TI) is the activation 
energy. It may then be shown [4] that a rate constant is given by 

where the Arrhenius parameters are evaluated at the temperatureT*, and where C is 
one less than the heat capacity of the parent molecule in units of k,. The modifications 
required by the Forst relation are thus minimal and may often be ignored. Let us 
nevertheless look at a simple model to see that in principle they should be there. 

For a chemical reaction occurring on a well-defined potential surface, the thermal 
rate constant can be written as [5] 

where Qf and Q are the partition functions of the transition state and the parent 
molecule, respectively. We assume that the third law of thermodynamics applies to 
each, and thus that at low temperatures their ratio will go to unity. The activation 
energy will then be E, +kBT, and the Arrhenius pre-exponential factor becomes 
k,Te/h. We may use steepest descent theory to write 

where o is the sum-over-states of the parent molecule, to obtain from (10) the relation 

Rate constants near threshold might thus be obtained solely from a knowledge of E, 
and the properties of the parent molecule. 

This improbable result is not apt to find much use in practice other than as an 
extreme limiting case. It nevertheless serves our present purpose quite well. We note 
that it could have been obtained directly from the microcanonical equivalent [6] of 
equation (1 l), 

d ( E -  E,) k (E)  = 
M E )  . 

If by assumption the ratio of partition functions in (1 1) is unity, then so must be the 
ratio of the corresponding sums-over-states. The result obtained from the modified 
Forst relation is thus confirmed. Our ability to pass from either the energy or the 
temperature domain to the other hence appears to be quite general. 
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Figure 2. Generalized Arrhenius plot of rate constants for reaction (18), reported in 
reference [7]. 

A differential form of these results can be useful for effecting such passages. We 
define a temperature of a molecule via the relation 

E = E,(T)-k,T, (16) 
and then, using a steepest descent theorem, differentiate (10) to obtain 

= (k ,  T *)-I - ( k ,  T)-’. 
d In k(E)  

d E  

The energy dependence of a rate constant is thus linked, via the definition in (9), to an 
activation energy. The transfer of information between the energy and temperature 
domains is accordingly facilitated. 

Let us pause to entertain an example. We consider some data of Reddy and Berry 
[7] for the reaction 

measured originally as a function of energy. The data were said at one time to be 
incompatible with the quasiequilibrium hypothesis. We present them in figure 2 in a 
generalized Arrhenius plot. Their logarithms are plotted versus the reciprocal of their 
associated temperatures, as defined in (1 6). From the slope, and using (9) and (1 7), an 
Arrhenius activation energy equal to 1.56 eV is obtained. Upon inserting it into (10) 

C,H,NC -+ C,H,CN, (18) 
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Microcanonical rate constants 209 

and calculating a pair of densities-of-states, An Arrhenius pre-exponential factor 
equal to 2.3 x 1013 sec-l then ensues. The results of Reddy and Berry have thus been 
nicely compressed to two parameters. 

In this form they can conveniently be compared with theory or with data gathered 
in an infinite heat bath. With one proviso, they should agree. The data used above were 
obtained from molecules which had been photo-excited to a substantial level, but 
which were still rotationally cool. Strictly speaking, they are therefore comparable 
only to data from a heat bath consisting solely of rotationally cool molecules. The pre- 
exponential factor which one might only think about measuring in such a bath will be 
less than it would be in a more realizable but unconstrained heat bath, as first discussed 
by Rynbrandt and Rabinovitch [8]. Only for 'loose' transition states will these factors 
differ significantly, however [9]. The value reported above makes it clear that reaction 
(18) does not fall into this category. It thus offers a reliable measure of what to expect 
in a heat bath. 

We now consider one additional facet to the relation between a microcanonical 
and a canonical rate constant. It is often convenient to have an explicit relation 
between an energy and the temperature linked by the isokinetic condition 

k(E) = k(T,). (19) 

This relation can be obtained as follows. The derivative of the left-hand side of this 
stipulation has already been given in (17), and may be rewritten as 

aInk(E) - AEa(Tt) -- 
aE C(ki  T I T )  

where Cis again one less than the heat capacity of the parent molecule (in units of kB), 
now evaluated at a mean value between T and 73. The derivative of the right-hand side 
of (19) meanwhile yields 

In the limit of a very large molecule we expect that the temperature defined by (16) will 
satisfy the isokinetic condition. The final factor on the right-hand side of (21) could 
then be identified with C, and the isokinetic temperature would then equal the 
geometric mean value of T and T'. Using this as a first approximation then permits 
higher order terms to be generated. They may be collected in order of increasing 
reciprocal powers of the heat capacity, and yield 

for the first few terms. It is understood that the activation energy, the heat capacity, 
and its derivative are all to be evaluated at the temperature Tb. 

Beyond this point the expansion becomes quite complicated. Nevertheless these 
first terms are adequate for all but the smallest molecules. In particular, they suffice for 
deducing the pre-exponential factor from data such as those in figure 2, but without 
having to calculate any densities-of-states. It has also been shown how this relation 
illuminates the origin of kinetic isotope effects in isolated molecules [4]. Let us address 
some additional examples. 
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210 C.  E. Klots 

2.1. Kinetic shifts 
In 1959 Chupka [lo] distinguished between the threshold energy of a reaction and 

that energy at which its rate is large enough to be discernible. The latter energy is often 
called the ‘appearance potential’, and its displacement from the former is the ‘kinetic 
shift’. If we have some idea of the temperature in a heat bath at which a given rate is 
sustained, then (22) will give us directly the isokinetic energy. The necessary 
information may have been originally garnered in a heat bath or it may come from a 
calculation carried out perhaps more simply as a function of temperature. 

The thermionic emission of electrons from molecules poses a recent example of 
how working in the temperature regime can be useful. While lingering there, the 
theoretical expressions [ 11, 121 could be checked for their compatibility with the 
Richardson equation for emission from metallic surfaces. Having survived that test, 
they could then be transferred to the energy regime. As an explicit example, let us 
consider the reaction 

C,, +. C&, + e. (23) 

A pre-exponential Arrhenius factor equal to 2 x lox6 sec-* and an activation energy 
equal to the ionization potential plus k,T may be estimated for it. To sustain a rate 
constant equal to, say, lo5 sec-’, a value of AE,/k,T, equal to 26-0 is thus indicated. 
Equation (22) then implies an appearance potential of 44 eV, consistent with a recent 
measurement [ 131. 

Similarly one may speak of the ‘disappearance potential’ of an ion such as C& It 
is the energy at which the ion, having been formed by electron attachment, disappears 
as a result of re-emission of the electron. It has been understood [14] for a long time 
that the lifetime of an ion can be limited by this process, and an early theorem [ 151 in 
fact states that the lifetime will be less than or equal to the microcanonical result. 
Nevertheless the very large kinetic shifts now being observed [ 161 permit, perhaps for 
the first time, a meaningful comparison between experiment and theory. Good 
agreement exists in the case of C;, [17]. 

These large kinetic shifts are of course a reflection of the ‘degrees of freedom’ 
effect. Let us consider this effect more generally. It may be formulated as the quantity 
(aE/an),, where n is the number of degrees of freedom, and may be written as 

Consider then a molecule containing a reaction centre to which additional degrees 
of freedom are added. Let us assume that they function only as spectator modes, 
i.e. that they have no effect on a rate constant in the infinite heat bath. The 
second term on the right-hand side of (24) will then be zero. The first term can 
meanwhile be obtained by differentiating (22). The major contribution comes from the 
first term of this relation. It equals the thermal energy of the new degree of freedom, 
and is necessarily positive. Differentiation of the final (and of still higher order) terms 
will introduce negative contributions. 

We may estimate the point where they are of comparable importance as follows. 
Suppose we are considering a reaction which in a heat bath has a pre-exponential 
Arrhenius factor of lo’* sec-’, again being studied in an apparatus sensitive to rate 
constants greater than lo5 sec-l. At this threshold, the isokinetic rate constant will be 
characterized by a value (AE,/k,Tb) equal to 20.7. Figure 3 illustrates equation (22) as 
applied to this’ hypothetical situation. It will be seen that molecules with a heat 
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Figure 3. The solid curve traces the energy needed to sustain a typical threshold rate constant, 
in units of the activation energy, as a function of molecular size, as given by (22). 

capacity (at T,) less than about six will exhibit a negligible kinetic shift. Above that 
point, however, the shift will increase inexorably with molecular size. 

2.2 Other variables 
The relations developed above all have a generalization of Forst’s result at their 

core. We now turn to a quite different theorem. Rate constants are determined by 
many parameters beside the energy. Angular momentum is an obvious example, but 
the masses of the constituent atoms and the forces between them are also of interest. 
Fo r  any such parameter, say a, it has been shown [4] that one can write 

alnk(E,a) - - alnk(Tt,x)+(?ln[Q(rt)/Q(T)] 

where Ti is just the temperature already defined in (9) and Q is the partition function 
of the parent molecule. 

These parameters can be divided into two groups. Some, such as the mass of an 
atom subject to isotopic substitution, affect the properties of the parent molecule and 
hence of its partition function. Others, such as the magnitude of a potential barrier, do 
not. The impact of an alteration in their magnitude will hence be confined to the first 
term on the right-hand side of (25). It will equal the effect of that same alteration in an 
infinite heat bath set, not to the isokinetic temperature but to a lower one. 

A parameter which requires consideration of both terms is angular momentum. 
Consider a heat bath composed of molecules all of which have the same angular 
momentum, J. The rotational partition function may be written as 

(25) aa a m  aa 

where B is the average rotational constant. The final term in (25) is thus readily 
evaluated. To obtain the term a lnk(Tl)/aJ* in that equation, however, we will need to 
adopt a model. It will be assumed, following Rice and Gershinowitz [18], that angular 
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212 C. E. Klots 

momentum affects a thermal rate constant by increasing the activation energy by the 
amount (13-B)J2.  In the case of chemistry occurring on a Born-Oppenheimer 
surface, Bt can be thought of as the (average) rotational constant of the transition 
state. We assume in any case that this term occurs in a rate constant solely via a 
Boltzman factor. If so we shall then have 

alnk(Tf) - -(BZ-B) 
- 

i3J2 k,Tf 
and hence 

alnk(E) - B B* 
aJ2 k,T k,TI’ 

Applications of this result in several contexts have been given [19,20]. It must be 
emphasized however that, despite a superficial similarity to (17), this relation is on a 
more tenuous footing. It rests upon the Rice-Gershinowitz supposition and thus it can 
fail. One instance, the phase-space limit, has recently been identified [21]. Nevertheless 
for qualitative purposes the relation in (28) has been quite useful. 

Let us consider then a more clear-cut application-to an elementary barrier, say 
E,, which must be surmounted for a reaction to proceed. It will certainly appear in a 
canonical rate constant expression via a simple Boltzman factor. Equation (25) then 
reduces to 

This relation, useful as it is, is even more interesting when combined with (17) to yield 

T (g)k = (T--. 
Suppose for example that the size of the barrier is increased by aE,. The work which 
must be expended to overcome it increases accordingly. One can compensate for the 
attendant decrease in the rate constant by increasing the heat content of the molecule. 
According to (3), that increment is given by the inverse efficiency of a steam engine 
operating between the temperatures defined in (9) and (16). The right-hand side of (30) 
is thus known as a Carnot-Kelvin factor. 

It is, of course, a number greater than unity. Thus small variations in a barrier size 
can be magnified into much larger displacements of the energy needed to maintain a 
given rate constant. An ‘appearance potential’ is an example of just such an energy. 
Let us look at how its magnitude can be illuminated by (30). 

Worgotter et al. [22] have reported the appearance potentials of a number of ions 
formed by successive evaporations of C,, beginning with the Ci0 ion. The measured 
values are listed in table 1. They have been corrected for the thermal energy of the C,, 
progenitor and its ionization potential, and for the calculated (see below) activation 
energies of any preceding dissociations. These numbers thus constitute the energy 
needed to make the ion ‘appear’, interpreted in their apparatus to mean that energy 
needed to sustain a threshold rate constant equal to 3 x lo4 sec-l. 

For the dissociation 

an activation energy equal to 7-1 eV may be adopted from earlier work [23]. It can be 
obtained by assuming that the pre-exponential Arrhenius factor for the reaction 
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Table 1. Corrected appearance potentials and inferred activation energies for CA+2 -+ C: + C,. 

Ion (n) Corrected AP (eV) AEa (eV) 

41% 
39-8 
38-5 
37.5 
36.1 
38.2 
3 6-9 
36.9 

7.06 
6-77 
6.59 
6.45 
6.25 
6.55 
6.36 
6.36 

equals 4 x 1015 sec-'. This value identifies the ratio AE,/k,Tb as equal to 25.6 for a rate 
constant isokinetic with the threshold rate. The observed magnitude of the threshold 
together with (22) then gives a value for AEa itself. 

The subsequent dissociations seem to require smaller amounts of energy to sustain 
the threshold rate. Let us assume that this arises from smaller barriers, i.e. that they all 
have the same pre-exponential Arrhenius parameter. One might follow Worgotter et 
al. [23] and extract in turn from (22) a value of AEa for each dissociation. It is much 
easier however to take the difference between each observed threshold energy and 
41.2 eV, and to then divide this by the appropriate Carnot-Kelvin factor to obtain 
directly the shift in the barrier size. 

This is readily done. The Carnot-Kelvin factor can be written as 

and estimated here to equal 7.1 5. The barrier sizes which then ensue are listed in table 
1. They are identical with those found by Worgotter et al. (221. 

Apart from simplicity, the above procedure shows directly how large shifts in 
appearance energies originate from subtle differences in barrier height. A convincing 
picture emerges of a gentle decline in the dissociation energies, beginning at C&,. 
Clearly this ion is not an isolated outcropping of magic. 

Let us consider one more example of a change in barrier size, and the subsequent 
change in an appearance potential that can ensue. The ionization potential of an atom 
can be lowered by the application of an external electric field. Classically, and to a 
good approximation experimentally, that decrease is given by 

(33) A = -2F'" 

where A is the shift, and F is the electric field strength, each expressed in atomic units. 
To extend this treatment to larger species, one may assume that the electron moves in 
a potential given by 

where C, is the charge-induced dipole coefficient and R,  is the radius of the central ion. 
For very large molecules this term will be dominant, and field ionization is then given 

(35) 
This relation is equivalent to Schottky's result, obtained by him in connection with the 

A = -FII2 
by ~ 7 1  
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214 C. E. Klots 

effect of an electric field on the rate of thermionic emission of electrons from a metal 
surface [24]. Note that the magnitude of the electric field effect has hardly changed in 
going from an atom to matter of macroscopic dimensions, and so can be estimated 
with little ambiguity for small molecules. 

Thermionic emission from small molecules such as C,, can also occur. We saw 
earlier that its appearance potential should be much higher than the ionization 
potential, in accord with (22). Gallogly et al. have in fact reported an appearance 
potential in good agreement with expectations [13]. They noticed a marked sensitivity 
of their result to electric fields, however, and so supposed that they were observing the 
classic field ionization of a Rydberg electron. They were surely observing instead the 
much larger shift in the kinetic shift arising from a magnification of the electric field 
effect by a substantial Carnot-Kelvin factor. As before, we can easily estimate its size. 
Experiments to test this mechanism are in progress. 

Another example of an intramolecular parameter, i.e. of one which does not affect 
the properties of a parent molecule, is a label specifying the final state of a product of 
a reaction. Recall the discussion with which we began this paper. It was noted how 
certain model situations invited the use of the word temperature. Equation (25) goes 
much further. It tells us that the product state distributions and branching ratios which 
emanate from any isolated molecule characterized by any potential and with any 
angular momentum are related to those which one might measure in a certified heat 
bath. Temperature in that context is no longer only a useful metaphor. 

Alternatively the distribution might be obtained from a model, calculations for 
which are invariably more easily effected using the canonical ensemble. Several 
applications of this possibility have been discussed elsewhere [20,21]. We can illustrate 
them by considering again the low angular momentum limit of the phase-space model 
of figure 1. Equation (25) tells us that the slope of a distribution is to be obtained from 
the slope of a canonical distribution, calculated at the temperature satisfying (9) in 
which the kinetic energy-dependent activation energy has been entered. Suppose that 
as a first approximation we use only the activation energy associated with the entire 
distribution. It is easy to show that, for the elementary phase-space model, this 
procedure will generate the temperature defined by (4), and thus curve (b) in figure 1. 
This result is clearly a useful starting point, to which the higher-order refinements 
discussed elsewhere [20,21] may be brought. 

Let us close here by shedding new light on another old subject. Figure 4 shows 
measurements [25] of the kinetic energy distribution for the products of the reaction 

C,H,Br+ + C,H: + Br. (36) 

The open circles were obtained when photoionization led to an ion in its ground 
electronic state ; the filled symbols reflect photoionization into various vibrational 
levels of the first electronically excited state. In each case the observed distribution has 
been scaled by the average kinetic energy. This coalescing of data obtained at different 
vibrational levels reveals clearly two very different distributions, reflecting two 
different potential energy surfaces. Evidently dissociation from the first excited state 
occurs prior to internal conversion. 

This scaling procedure did not require that Miller and Baer know anything about 
the two surfaces, nor about the activation energies associated with each. When it was 
first introduced [26], the reason why the procedure worked was understood only 
nominally. We can now frame that reason more succinctly. If a kinetic energy 
distribution can be evaluated at a temperature, then its average energy, say E, can also 
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Figure 4. Scaled kinetic energy release distributions for reaction (36),  from reference [26]. 

be investigated as a function of the temperature. For radially symmetric potentials, 
and for low values of the angular momentum, it is found [9] that their ratio is 
circumscribed by the relation 

We may see this explicitly with the infinite well potential 

which yields 

V = O , R >  R, 
V = - a , R <  R, 

where ,u is the reduced mass and Il and I ,  are the moments of inertia of the two 
products. The phase-space and the thermodynamic limits are readily apparent. Note 
also that the ratio c/k,Tf  is independent of the total energy. For more complicated 
potentials this ratio need not be constant, but is found in practice to be very nearly so. 
The scaling property, so beautifully exploited by Miller and Baer, then follows. 

3. Summary 
The relations presented in this paper all flow from the steepest descent 

approximation as applied to microcanonical rate constants. We have seen several 
examples of how they can be used to obtain numbers. Many others could have been 
given. Perhaps more important are the insights which these relations can provide. Why 
are isotope effects enhanced upon isolation? When might a rate constant go through 
a maximum as a function of energy? Why does a small amount of magic make a 
particular structure jump out of a mass spectrum? It has been shown above, in the 
cited literature and elsewhere, how questions such as these can be answered. 
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Appendix 
Repeated references to steepest descent theory will be found in the above, and its 

origin in the paper of Hoare and Ruijgrok has been cited. They had observed that a 
density-of-states of a system with energy E (as measured from its zero-point) could be 
calculated as 

where the partition function Q and the heat capacity C (in units of k,) are evaluated 
at the temperature defined by 

They also noted that a sum-over-states o ( E )  could be estimated as 
E = E(T).  (A 2) 

= dE)  kBT 

i.e. that 
d In w (E) 

dE 
= (k,T)-' 

These relations are indeed useful, but fail badly as the energy approaches zero. Yet 
equations (10) and (1 5) make it clear that this limit is often called for. This need can 
be accommodated by noting that a density-of-states can also be thought of as the sum- 
over-states of a system whose partition function equals Q(T)/k,T. One can then write 

where the temperature is now given by 

E = E(T)-k,T. (A 6) 
Similarly a sum-over-states can be thought of as a density-of-states of a system whose 
partition function equals Q(T)k,T. One then has 

Q(T)exp (E /k~T)  
(2x(C+ 1)p2 w(E) = 

where now 
E = E(T)+k,T. 

These relations, which are well-behaved as the energy vanishes, constitute the essential 
underpinnings of finite heat bath theory. 
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